a. Consider the vector v = . Is the transformationb.T(x) = v x (the dot product) from R 3 to R linear? If so, find the matrix of T. Consider an arbitrary vector 5 in R 3. Is the transformation T(x) = v - x linear? If so, find the matrix of T (in terms of the components of 5). Conversely, consider a linear transformation T from R 3 to R. Show that there exists a vector v in R 3 such

Monday, September 12, 2016 Trigonometry 1.5: Four Additional Circular Functions: Tanget, Secant, Cosecant, and Cotangent Functions - Tangent: tan X = sin X/cos X • ^ produces: tangent functions : {(x, tan x)} - Reciprocal Functions • SECANT: sec x = 1/cos x — produces: secant function : {(x, sec x)} • COSECANT: csc x = 1/sin x — produces: cosecant function : {(x, csc x)} • COTANGENT: cot x = cos x/ sin x — produces: cotangent function : {(x, cot x)} - E = is an element of… [can be] - Z = intergers (+/-) • K E Z FUNCTIONS DOMAIN RANGE {(x, tan x)} x doesn’t = pi/2 +k(pi) all real numbers {(x, sec x)}